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1. Introduction

In January 1920, Ramanujan wrote his final letter to Hardy [3], where he introduced a class
of functions that he called mock theta functions due to how they mimic certain behaviors of
classical modular forms, especially Jacobi theta functions. In the letter, Ramanujan listed
properties of 17 such functions. Based on some of these properties, he assigned an order
to each mock theta function, classifying his examples as third, fifth, or seventh order mock
theta functions.

In the century since Ramanujan’s death, number theorists have investigated the properties
of these functions and worked to classify exactly how “almost modular” these functions are.
This rigorous study started with Watson [12], who proved many of Ramanujan’s initial claims
and introduced some new mock theta functions. However, it was not until Zwegers’s 2002
thesis [13] that we began to understand how mock theta functions fit in the general area
of non-holomorphic modular forms. Zwegers showed that mock theta functions are, in fact,
not modular, but can be completed to become a function that displays modular behavior
by adding a certain non-holomorphic part. This completed function is called a weak Maass
form. For more information on the history and definition of mock theta functions, see [2],
[7],[9], or [11].

Zwegers’s work allowed for the discovery of infinite families of mock theta functions. In
particular, McIntosh studied some second order mock theta functions in [10]. In his study,
McIntosh stated the following second order mock theta function identities:

A(q) =
∞∑
n=0

q(n+1)2(−q; q2)n
(q; q2)2n+1

=
∞∑
n=0

qn+1(−q2; q2)n
(q; q2)n+1

,(1)

B(q) =
∞∑
n=0

qn(n+1)(−q2; q2)n
(q; q2)2n+1

=
∞∑
n=0

qn(−q; q2)n
(q; q2)n+1

.(2)

We use the q-shifted factorial

(a; q)n =
n−1∏
k=0

(1− aqk).

In this paper, we assume |q| < 1. Then, we can write

(a; q)∞ = lim
n→∞

(a; q)n =
∞∏
k=0

(1− aqk).

The main purpose of this paper is to provide combinatorial proofs of (1) and (2).
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In Section 3, we will prove a general identity that contains (1) and (2) as special cases.
In Section 4, we will discuss other special cases of the combinatorial interpretation from
Section 3, including a more direct combinatorial interpretation of (1). Finally, in Section
5, we generalize our interpretation of (2) to give a combinatorial interpretation of a q-
hypergeometric series transformation identity.

2. Background

A partition λ of an integer n is a multiset of integers (λ1, λ2, . . . , λk) such that λ1 + λ2 +
· · ·+λk = n. We use the convention that λ1 ≥ λ2 ≥ . . . ≥ λk and let p(n) denote the number
of partitions of n. A generating function for p(n) is given by

∞∑
n=0

p(n)qn =
1

(q; q)∞
.

Partitions have a graphical representation called a Ferrers diagram (or Young diagram),
which is a left-justified array of cells where the jth row has λj cells.

In this paper, we will use two generalizations of partitions. A k-colored partition is a
partition in which each part can appear in one of k colors. Let pk(n) denote the number of
k-colored partitions of n. Then we have the following generating function:

∞∑
n=0

pk(n)qn =
1

(q; q)k∞
.

In [1], George Andrews introduced odd Ferrers diagrams, which are obtained by taking a
Ferrers diagram, placing a 0 in the top-left corner, filling the top row and left column with
1’s, and filling the remainder of the diagram with 2’s. We can think of these diagrams as
representing a pair (k, λ) where k is a non-negative integer and λ is a partition into odd
parts of size at most 2k + 1.

Overpartitions [5] are partitions where the first appearance of any size part may be over-
lined. If we let p(n) be the function that counts the number of overpartitions of n, we can
see that a generating function for p(n) is given by

(−q; q)∞
(q; q)∞

.

Overpartitions are a logical generalization of partitions and can be extended to provide
a generalization of many partition-theoretic objects. In this paper we will work with an
overpartition generalization of odd Ferrers diagrams called shaded odd Ferrers diagrams.
In this generalization, we may add a shaded box to any interior corner of an odd Ferrers
diagram. This is equivalent to considering pairs (k, λ) where k is a non-negative integer and
λ is an overpartition into odd parts of size at most 2k + 1 where all overlined parts must be
of size at most 2k − 1. Shaded odd Ferrers diagrams are equivalent to the boxed 2-modular
diagrams introduced by the author in [4]. We define the size of a shaded odd Ferrers diagram
to be the sum of the entries in all the cells. If we let so(n) denote the number of shaded odd
Ferrers diagrams of size n, we have the following generating function:

∞∑
n=0

so(n)qn =
∞∑
k=0

(−q; q2)k
(q; q2)k+1

qk.
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0 1 1 1 1 1
1 2 2 2 2 2
1 2 2 2
1 2 2 2
1 2 2
1 2 2
1

(a) an odd Ferrers diagram

0 1 1 1 1 1
1 2 2 2 2 2
1 2 2 2
1 2 2 2
1 2 2
1 2 2
1

(b) a shaded odd Ferrers diagram

Figure 1

Note that the sum on the right-hand side is indexed over the number of ones in the top row.

3. A general identity

In this section, we will focus on proving the following theorem.

Theorem 3.1. For |q| < 1, |atz| ≤ 1 and z 6= 0,

∞∑
n=0

(−q
2

z
; q2)n(a2tz)nqn(n+1)

(atq; q2)n+1(aq; q2)n+1

=
∞∑
n=0

(at)nqn(−azq; q2)n
(aq; q2)n+1

.

Proof. This identity can be obtained by a 3φ2 transformation (c.f. [6, Eq. 17.9.6]), which
states that

(3)
(e/a, de/(bc); q)∞
(e, de/(abc); q)∞

3φ2

(
a, d/b, d/c

d, de/(bc)
; q, e/a

)
= 3φ2

(
a, b, c

d, e
; q, de/(abc)

)
,

where

(a, b; q)∞ = (a; q)∞(b; q)∞

and

3φ2

(
a, b, c

d, e
; q, z

)
=
∞∑
n=0

(a; q)n(b; q)n(c; q)n
(d; q)n(e; q)n(q; q)n

zn, |z| < 1.

In (3), replacing q by q2 and taking a = q2, b = −q2
τ

, c = −q2
z

, d = aq3 and e = atq3 gives

∞∑
n=0

(−aτq; q2)n(−azq; q2)n
(aq; q2)n+1(a2tτz; q2)n+1

antnqn =
∞∑
n=0

(−q2/τ ; q2)n(−q2/z; q2)n
(aq; q2)n+1(atq; q2)n+1

a2ntnτnzn.

Then, by letting τ → 0, we obtain

∞∑
n=0

(−azq; q2)n
(aq; q2)n+1

antnqn = lim
τ→0

1

(1− atq)(1− aq)

∞∑
n=0

(−q2/τ ; q2)n(−q2/z; q2)n
(atq3; q2)n(aq3; q2)n

a2ntnτnzn(4)

=
∞∑
n=0

(−q2/z; q2)na
2ntnznqn(n+1)

(atq; q2)n+1(aq; q2)n+1

. �
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In order to give a combinatorial proof of Theorem 3.1, we introduce some notation. Let
PB,k be the set of two-colored partitions into parts of size ≤ 2k + 1, such that all even part
sizes ≤ 2k are color 2 and appear exactly one or two times. Because all even parts are the
same color, we will not label the color of the even parts. We let PB = ∪k≥0PB,k. Let SF be
the set of shaded odd Ferrers diagrams.

Given any partition λ, we let ν(λ) denote the number of parts and νo(λ) denote the number
of odd parts. Analogously, for a shaded odd Ferrers diagram π, ν(π) is the number of rows
in the diagram. For a partition λ ∈ PB, we define νd,e to be the number of even part sizes
that appear, νu,e(λ) to be the number of even parts that appear exactly once and ν1(π) to
be the number of odd parts of color 1. For example, if we take λ = 71 + 72 + 6 + 6 + 52 + 52 +
4 + 31 + 2 + 2 + 11 + 11 + 12 ∈ PB,3, we have ν(λ) = 13, νo(λ) = 8, νd,e(λ) = 3, νu,e(λ) = 1,
and ν1(π) = 4. Note that if λ ∈ PB,k, then νd,e = k. For a shaded odd Ferrers diagram π,
we define ν(π) to be the number of shaded cells in π and top(π) to be the sum of the entries
in the top row of π. Additionally, when we talk about row numbers of a shaded odd Ferrers
diagram, we label the rows starting with the top row as row 0. Figure 2 illustrates these
statistics for a shaded odd Ferrers diagram.

row 0 0 1 1 1 1 1
row 1 1 2 2 2 2 2
row 2 1 2 2 2
row 3 1 2 2 2
row 4 1 2 2
row 5 1 2 2
row 6 1

Figure 2. a shaded odd Ferrers diagram π with ν(π) = 7, ν(π) = 2, and
top(π) = 5

Combinatorial proof of Theorem 3.1. First, notice that

∞∑
k=0

(−q
2

z
; q2)k(a

2tz)kqk(k+1)

(atq; q2)k+1(aq; q2)k+1

=
∑
λ∈P

aνo(λ)+2νd,e(λ)tνd,e(λ)+ν1(λ)zνu,e(λ)q|λ|

and

∞∑
n=0

(at)nqn(−azq; q2)n
(aq; q2)n+1

=
∑
π∈SF

atop(π)+ν(π)−1ttop(π)zν(π)q|π|.

To prove Theorem 3.1 combinatorially, we will construct a bijection φ between PB and SF .
Let k ≥ 0 and let λ ∈ PB,k. We define φ(λ) by creating a shaded odd Ferrers diagram
according to the following procedure (the column on the right will illustrate the procedure
on the partition 91 + 91 + 8 + 71 + 72 + 72 + 6 + 6 + 4 + 31 + 2 + 2 + 12 ∈ PB,4):
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Step 1. For each 1 ≤ j ≤ k, turn the first part of
size 2j into one shaded row of size 2j − 1
and add a single 1 to the top row of the
diagram. After this step, there will be k
1s in the top row and k shaded rows (sizes
{1, 3, . . . , 2k − 1}). Represent the result as
a shaded odd Ferrers diagram.

8 + 6 + 4 + 2 →

0 1 1 1 1
1 2 2 2
1 2 2
1 2
1

Step 2. Take each part of color 1, and add it as a
column to the boxed 2-modular diagram. + 91 + 91

+ 71 + 31
→

0 1 1 1 1 1 1 1 1
1 2 2 2 2 2 2 2
1 2 2 2 2 2
1 2 2 2 2
1 2 2

Step 3. Let {τ1, τ2, . . . , τm} be the remaining even
parts, listed in decreasing order. For each
1 ≤ j ≤ m define g(j) to be the maximum
integer n such that there are at least n parts
of color 1 and size ≥ τj + (2(j + n) − 1).
Then, remove the shaded box from row j+
g(j) and append τj as a 2-modular column
starting at row j + g(j).

+ 6 + 2 →

0 1 1 1 1 1 1 1 1
1 2 2 2 2 2 2 2
1 2 2 2 2 2 2
1 2 2 2 2 2
1 2 2 2 2

Step 4. Add parts of color 2 as unshaded 2-modular
rows.

+ 72 + 72 + 12 →

0 1 1 1 1 1 1 1 1
1 2 2 2 2 2 2 2
1 2 2 2 2 2 2
1 2 2 2 2 2
1 2 2 2 2
1 2 2 2
1 2 2 2
1

Note that, by the definitions in Step 3, for 1 ≤ j < m, λ has at least g(j) parts of color 1
and size at least

τj + 2(j + g(j))− 1 ≥ τj+1 + 2 + 2(j + g(j))− 1 (because τj+1 ≤ τj − 2)

= τj+1 + 2(j + 1 + g(j))− 1.

Therefore, g(j + 1) ≥ g(j). Thus j + 1 + g(j + 1) > j + g(j). This inequality shows that
Step 3 is well-defined.

To help us define the inverse map, we prove the following claim.
Claim: Using the definitions in Step 3, for 1 ≤ j < m, we have

(5) τj+1 + 2g(j + 1) + 2j + 2 ≤ τj + 2g(j) + 2j.

Proof of Claim. Assume that the claim is false. Since τj+1 < τj, we can define x > 0 such
that τj+1 = τj − 2x. Then, by our assumption, we have

2g(j + 1)− 2x+ 2 > 2g(j).
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Then, by definition, λ has at least g(j + 1) parts of color 1 and size at least

τj − 2x+ 2(j + 1 + g(j + 1))− 1 ≥ τj + 2j + 2 + 2g(j)− 1.

Note that our assumption implies that g(j + 1) > g(j), so we now can say that there are at
least g(j) + 1 parts of color 1 and size at least τj + 2(j + g(j) + 1)− 1. This contradicts the
assumption that g(j) is the maximum integer n such that there are at least n parts of color
1 and size ≥ τj + (2(j + n) − 1). Therefore, our assumption must be false and our claim
must be true. �

To prove that φ is a bijection, we give the inverse map φ−1. We create a partition in⋃
k≥0PB,k from each shaded odd Ferrers diagram according to the following procedure:

Step 1. Let π ∈ SF . For j ≥ 1, let nj be the size of
the jth largest non-shaded row (not includ-
ing the top row). Create λ2, a partition
into odd parts by taking all nj such that
nj < 2ν(π) + 2j + 1. Let π′ be the rows of
π that were not used to create λ2.

0 1 1 1 1 1
1 2 2 2 2 2
1 2 2 2 2
1 2 2 2
1 2
1 2

→ ν(π) = 2,
n1 = 11 6< 7,
n2 = 7 < 9,
n3 = 3 < 11,
π2 = 7 + 3

Step 2. For each j ≥ 1, starting at 1, if row j of π′ is
not shaded, create an even part by remov-
ing one cell containing a 2 from π′j and one
cell containing a 2 from each row π′j+m with
size(π′j+m) > 2(ν − m), where ν = ν(π′)
is the number of rows in π′. Then, add a
shaded box to the end of row j. Let λ′e be
the collection of the even parts obtained in
this step, noting that λ′e will have distinct
parts.

π′ :
0 1 1 1 1 1
1 2 2 2 2 2
1 2 2 2 2
1 2

→

ν(π′) = 4
size(π′3) = 9 >
2 + 6
size(π′4) = 3 6>
0 + 4
λ′e = 4

Step 3. Note that, after Step 2, the remaining di-
agram will have distinct parts. Thus, we
can separate it into an ν × ν Durfee trian-
gle odd Ferrers diagram (called τ) and the
conjugate of a 2-modular diagram for a par-
tition into odd parts of size ≤ 2ν+1 (called
λ1).

0 1 1 1 1 1
1 2 2 2 2
1 2 2 2
1 2

→

τ λ1
0 1 1 1 1 1
1 2 2 2 2
1 2 2 2
1 2

Step 4. From the triangle, create the even parts
2 + 4 + . . . + 2ν. Inserting the parts of λ′e,
the parts of λ1 as parts of color 1, and the
parts of λ2 as parts of color 2, we obtain a
partition in PB.

τ → 6 + 4 + 2
λ1 → 71 + 51

λ′e = 4
λ2 → 72 + 32

→ φ−1(π) :
71+72+6+51+
4 + 4 + 32 + 2

To confirm that φ−1 is, in fact, the inverse of φ, we show how the threshold conditions are
related. Let λ ∈ PB and define π = φ(λ) ∈ SF . Note that any unshaded row in π that comes
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from an odd part of color 2 in λ must have size at most 2νd,e(λ) + 1. Then, using (5), we can
see that, once we remove the parts that came from an odd part of color 2, any remaining
unshaded rows must satisfy |πj+g(j)| ≥ 2(νd,e(λ)− (j+ g(j))) + 2g(j) + 2j+ 1 = 2νd,e(λ) + 1.
Now, if we define jmax to be the number of even parts appearing twice in λ and if the
jth unshaded part of π comes from a part of color 2 in λ, j > jmax. Moreover, note that
νd,e(λ) = ν(π) + jmax, where jmax is the number of even parts appearing twice in λ. In the
language of step 2 of φ−1, we have nj ≤ 2ν(π) + 2jmax + 1 < 2ν(π) + 2j + 1, as desired.

Next, we show how we obtain the threshold condition in Step 2 of φ−1. Again, using (5)
and the definition of g(j), we can see that, for 1 ≤ m ≤ τj

2
, |πj+g(j)+m| ≥ 2(νd,e(λ) − j −

g(j)−m) + 1 + 2g(j) + 2j = 2νd,e(λ)− 2m+ 1.
Note that our bijection takes a partition λ ∈ PB with ν parts, νo odd parts, νu,e even parts

appearing exactly once, νd,e different even part sizes, and ν1 parts of color 1 to a shaded odd
Ferrers diagram, π where π has νu,e shaded rows, 2k+νo(π) 1’s, and a top row of size νd,e+ν1
Therefore, we have proved that∑

λ∈PB

aνo(λ)+2νd,e(λ)tνd,e(λ)+ν1(λ)zνu,e(λ)q|λ| =
∑
π∈SF

atop(π)+ν(π)−1ttop(π)zν(π)q|π|.

�

Note that if we set a = t = 1 and z = q in Theorem 3.1 and multiply both sides by q, we
obtain (1). Furthermore, setting a = t = z = 1 in Theorem 3.1 results in (2).

4. Combinatorial interpretations of other mock theta functions

In this section, we explore special cases of Theorem 3.1. We begin with a combinatorial
interpretation of (1). Let PA,k be the set of 3-colored partitions into odd parts, where the
largest part is 2k + 1, all parts of color 3 and size < 2k + 1 appear once or twice, and the
part (2k + 1)3 appears exactly once. Let B be a set that generalizes odd Ferrers diagrams
by taking shaded odd Ferrers diagrams, replacing the zero by a 1 and replacing the 1 in any
shaded row with a 2.

Then, we can rewrite (1) as

(6)
∑
k≥0

∑
λ∈PA,k

q|λ| =
∑
π∈B2

q|π|.

Note that, for λ ∈ PA,k, subtracting 1 from every part of color 3 and changing it to color
2 gives a partition λ′ ∈ PB,k. Additionally, for π ∈ B, subtracting 1 from every even part
and replacing the 1 in the top left corner with a 0 results in a shaded odd Ferrers diagram
π′ ∈ B. Therefore, the bijection described in Section 2 also proves (6).

Next, we consider two third-order mock theta functions that appear as special cases of
Theorem 3.1. As mentioned in [10], if we let a = t = 1 and let z → 0, we obtain

(7)
∞∑
n=0

q2n(n+1)

(q; q2)2n+1

=
∞∑
n=0

qn

(q; q2)n+1

.

Note that this function is Watson’s third-order mock theta function ω(q).
7



If, instead, we let t = 1, a = −q, and z → 0, we obtain
∞∑
n=0

q2n(n+2)

(−q2; q2)2n+1

=
∞∑
n=0

(−1)nq2n

(−q2; q2)n+1

.

If we multiply both sides by q2 then take q → q1/2, we get

(8)
∞∑
n=1

qn
2

(−q; q)2n
=
∞∑
n=1

(−1)n−1qn

(−q; q)n
.

Note that the left-hand side of (8) can be expressed in terms of Ramanujan’s third-order
mock theta function

f(q) :=
∞∑
n=0

qn
2

(−q; q)2n
.

Using these identities and the ideas presented in Section 3, we can obtain combinato-
rial interpretations of the coefficients of ω(q) and f(q). From (7), we obtain the following
interpretations for the coefficients of ω(q):

• The number of partitions where there are no skipped even parts, all even parts appear
twice, and all odd parts are two colored.
• The number of odd Ferrers diagrams.

The second interpretation can also be found in [1]. Similarly, from (8), we note the following
interpretations for the coefficients of f(q):

• The number of two-colored partitions into odd parts, where all part sizes appear at
least once with color 2, counted with weight (−1)# parts−# distinct part sizes.
• The number of partitions counted with weight (−1)largest part−# parts.

A common interpretation of the left side of (8) is that it counts the number of partitions
with even rank minus the number of partitions with odd rank, where the rank of a partition
(as defined by Dyson in [8]) is the size of the largest part minus the number of parts. A
fascinating result of our combinatorial interpretation is that, when traced through to this
identity for f(q), we get that the right side of (8) can also be interpreted as counting the
number of partitions with even rank minus those with odd rank.

5. A combinatorial hypergeometric series transformation

We begin this section by noting that, in our proof of Theorem 3.1, we equated the coeffi-
cients of τ 0 on both sides of the identity

(9)
∞∑
n=0

(−aτq; q2)n(−azq; q2)n
(aq; q2)n+1(a2tτz; q2)n+1

antnqn =
∞∑
n=0

(−q2/τ ; q2)n(−q2/z; q2)n
(aq; q2)n+1(atq; q2)n+1

a2ntnτnzn.

We can extend our combinatorial interpretation of Theorem 3.1 to give a new combinatorial
interpretation of (9). Let T1 be the set of triples (k, π1, π2) where k ∈ Z≥0, π1 is an overpar-
tition into odd parts of size ≤ 2k+ 1 with all overlined parts ≤ 2k− 1, and π2 is a partition
into parts of size ≤ 2k with all odd parts distinct and parts of size 0 allowed. Let T2 be the
set of triples (m,λ1, λ2) where m ∈ Z≥0, λ1 is a 2-colored partition into even parts of size
≤ 2m such that parts within each color are distinct, and λ2 is a 2-colored partition into odd
parts of size ≤ 2m+ 1. Then (9) is equivalent to the following combinatorial identity.
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Theorem 5.1. ∑
(k,π1,π2)∈T1

ak+ν(π1)+2νe(π2)+νo(π2)tk+νe(π2)zν(π1)+νe(π2)qk+|π1|+|π2|τ ν(π2)

=
∑

(m,λ1,λ2)∈T2

a2m+ν(λ2)tm+ν1(λ2)zm−ν2(λ1)τm−ν1(λ1)qm+|λ1|+|λ2|

A direct bijective proof of this interpretation would be a welcome addition to the q-hypergeometric
series literature.

References

[1] G. E. Andrews. Integer partitions with even parts below odd parts and the mock theta functions. Ann.
Comb., 22(3):433–445, Sep 2018.

[2] G. E. Andrews and B. C. Berndt. Ramanujan’s Lost Notebook, Part V. Springer, New York, 2018.
[3] B. C. Berndt and R. A. Rankin. Ramanujan: Letters and Commentary. Amer. Math. Soc., Providence,

1995.
[4] H. E. Burson. A bijective proof of a false theta function identity from Ramanujan’s lost notebook. Ann.

Comb., 23(3):579–588, Nov 2019.
[5] S. Corteel and J. Lovejoy. Overpartitions. Trans. Amer. Math. Soc., 356:1623–1635, Jul 2004.
[6] NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.19 of 2018-06-22.

F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R.
Miller and B. V. Saunders, eds.

[7] W. Duke. Almost a century of answering the question: what is a mock theta function? Notices Amer.
Math. Soc., 61(11):1314–1320, 2014.

[8] F. Dyson. Some guesses in the theory of partitions. Eureka (Cambridge), 8:10–15, 1944.
[9] A. Folsom. What is ...a mock modular form? Notices Amer. Math. Soc., 57(11):1441–1443, 2010.

[10] R. J. McIntosh. Second order mock theta functions. Canad. Math. Bull, 50(2):284–290, 2007.
[11] K. Ono. The last words of a genius. Notices. Amer. Math. Soc., 57(11):1410–1419, 2010.
[12] G. N. Watson. The final problem: An account of the mock theta functions. J. London Math. Soc.,

s1-11(1):55–80, 1936.
[13] S. Zwegers. Mock Theta Functions. PhD thesis, Universiteit Utrecht, 2002.

9


