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Abstract. In his lost notebook, Ramanujan listed 5 identities related to
the false theta function

f(q) =

∞∑
n=0

(−1)nqn(n+1)/2.

A new combinatorial interpretation and proof of one of these identities
is given. The methods of the proof allow for new multivariate general-
izations of this identity. Additionally, the same technique can be used to
obtained a combinatorial interpretation of another one of the identities.
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1. Introduction

L. J Rogers [1] introduced false theta functions, which are series that would
be classical theta functions except for changes in signs of an infinite number of
terms. In Ramanujan’s notebooks [2] and lost notebook [3], he recorded many
false theta function identities that he discovered. However, in Ramanujan’s
last letter to Hardy in 1920, Ramanujan introduced mock theta functions and
shifted his focus away from false theta functions. The mathematical commu-
nity followed Ramanujan’s lead and largely ignored false theta functions for
the next several decades.

In recent times, there has been an increase in interest in false theta
functions. G.E. Andrews devoted a section of [4] to partition theoretic ap-
plications of false theta functions. More recently, such as in [5], [6], [7], [8],
and [9], researchers have found combinatorial proofs of some of Ramanujan’s
false theta function identities.
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In his lost notebook [3] (c.f. [10, p. 227]), Ramanujan stated five identi-
ties related to the false theta function

f(q) =

∞∑
n=0

(−1)nqn(n+1)/2, |q| < 1. (1)

These identities were first proved by Andrews in [11], using identities
such as the Rogers-Fine identity and Heine’s transformation. Other analytic
proofs have been given in [12], [13], and [14]. There are no previously known
bijective proofs of any of these identities.

In this paper, we provide a combinatorial proof of one of Ramanujan’s
identities for false theta functions. We adopt the standard q-series notation

(a; q)n =

n−1∏
j=0

(1− aqj), |q| < 1, n ∈ {0, 1, 2 . . .}.

Theorem 1.1 (Ramanujan). If f(q) is defined by (1), then for |q| < 1,

∞∑
n=0

(q; q2)n q
n

(−q; q2)n+1
= f(q4).

In this paper, we will focus on a bijective proof of Theorem 1.1. In Sec-
tion 2, we explain the necessary background on partitions. Then, in Section
3, we introduce a new combinatorial analogue of Theorem 1.1 and give its
bijective proof in Section 4. In Section 5, we introduce new identities that
arise from generalizing the proof in Section 4. Finally, in Section 6, we give a
similar combinatorial interpretation of another one of Ramanujan’s identities.

2. Background

We use several tools from the theory of partitions. Recall that a partition of n
is a non-increasing sequence of integers (π1, π2, . . . , πk) where π1 +π2 + · · ·+
πk = n. An overpartition of n is a partition of n where the first appearance of
a part of any size may be overlined. For example, (7, 6, 5, 5, 5, 3, 2, 2, 2) is an
overpartition of 37. We can create a graphical representation of a partition,
called a Ferrers diagram, by making an array of boxes whose ith row has as
many boxes as the ith part of the partition. There is a variation of a Ferrers
diagram called an m-modular diagram (also called a MacMahon diagram)
where the part mj + r with 0 ≤ r < m is represented by a row made of j
boxes containing an m following one box containing a r.

For this paper, we create an analogue of a 2-modular diagram called a
boxed 2-modular diagram, which is a graphical representation of a pair (k, π)
where k is a non-negative integer and π is a partition. To obtain the boxed
2-modular diagram, we represent π as a 2-modular diagram and k as a row
of one 0 and k 1s at the top of the diagram. For example, the figure below is
a boxed 2-modular diagram for the pair (3, (8, 7, 5, 5, 3)).
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0 1 1 1
2 2 2 2
1 2 2 2
1 2 2
1 2 2
1 2

Note that, if π is a partition into odd parts with the largest part no
greater than 2k + 1, the boxed 2-modular diagram will have the shape of a
partition and the boxes in the first column will not contain any 2s.

To represent an overpartition, we shade the last box of any overlined
part. For example, the figure below is a boxed 2-modular diagram for the
pair (3, (8, 7, 5, 5, 3)).

0 1 1 1
2 2 2 2
1 2 2 2
1 2 2
1 2 2
1 2

We use the following notation when discussing pairs (k, π).

• Pn is the set of pairs (k, π) where k is a non-negative integer and π is
an overpartition of n − k into odd parts of size no greater than 2k + 1
and with all overlined parts of size no greater than 2k − 1.
• ν(π) is the number of parts of the overpartition π.
• s(π) is the size of the smallest part of π.
• ν`(k, π) is the number of parts of size 2k + 1 in π.
• νs(π) is the number of times the smallest part appears in π.

3. Combinatorial Intepretation

In this section, we interpret Theorem 1.1 in terms of pairs (k, π) ∈ Pn. We
count each pair (k, π) ∈ Pn with weight (−1)ν(π).

Theorem 3.1. Let po(n) (resp. pe(n)) be the number of pairs (k, π), where
k is a non-negative integer and π is an overpartition of n − k into an odd
number (resp. even number) of odd parts of size not exceeding 2k + 1, where
all overlined parts must have size < 2k + 1. Then, for n ≥ 0,

pe(n)− po(n) =

{
(−1)k, if n = 2k(k + 1),

0, otherwise.

Theorem 3.2. Theorem 1.1 and Theorem 3.1 are equivalent.

Proof. The equivalence of the right sides is trivial, so we focus on the left
sides. Note that (q; q2)k generates partitions into distinct odd parts of size
no greater than 2k − 1, where each partition into ν parts has weight (−1)ν .
Similarly, 1

(−q;q2)k+1
generates partitions into odd parts of size no greater
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than 2k + 1, where each partition into ν parts has weight (−1)ν . Thus, if

we let the parts coming from (q; q2)k be overlined, we find that (q;q2)k
(−q;q2)k+1

generates overpartitions into odd parts of size no greater than 2k + 1, where
all overlined parts are no larger than 2k − 1, and each overpartition into ν
parts is counted with weight (−1)ν . Additionally, qk generates the integer k.
Therefore

∞∑
k=0

(q; q2)kq
k

(−q; q2)k+1
=

∞∑
n=0

{pe(n)− po(n)}qn,

where pe(n) and po(n) are as defined in Theorem 3.1. �

4. Proof of the Main Theorem

We devote this section to proving Theorem 3.1 combinatorially. To obtain
the bijection, we split Pn into cases. First, we show that conjugation is a
sign-reversing involution on the case where k + ν(π) ≡ 1 (mod 2). Then, for
the case where k+ν(π) ≡ 0 (mod 2), we further divide this subset of Pn into
cases depending on the relative sizes of the last row and the last column of
the boxed 2-modular diagram and introduce variations of conjugation that
provide sign-reversing bijections and involutions on these cases.

4.1. Conjugation

For an ordinary partition π, the conjugate partition π′ is defined to be the
partition created by reflecting the Ferrers diagram of π about the line y = −x.
Similarly, for a pair (k, π), where k is a non-negative integer and π is a
partition into odd parts of size ≤ 2k+ 1, we can reflect our boxed 2-modular
diagram about the line y = −x to get the conjugate pair (k′, π′).

Example 4.1. The conjugate of (4, (9, 9, 7, 7, 5, 5, 3)) is (7, (15, 13, 9, 5)).

0 1 1 1 1
1 2 2 2 2
1 2 2 2 2
1 2 2 2
1 2 2 2
1 2 2
1 2 2
1 2

→

0 1 1 1 1 1 1 1
1 2 2 2 2 2 2 2
1 2 2 2 2 2 2
1 2 2 2 2
1 2 2

Furthermore, if we have a pair (k, π) ∈ Pn, we can define the conjugate
pair (k′, π′) by taking the conjugate and overlining the (j + 1)st part in π′

for every j where a part of size 2j + 1 is overlined in π.

Example 4.2. The conjugate of (3, (7, 5, 5, 5, 3, 1, 1, 1)) is (8, (11, 9, 3)).
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0 1 1 1
1 2 2 2
1 2 2
1 2 2
1 2 2
1 2
1
1
1

→
0 1 1 1 1 1 1 1 1
1 2 2 2 2 2
1 2 2 2 2
1 2

Note that, because conjugation swaps rows and columns and preserves
the boxes in the diagram, k′ = ν(π), ν(π′) = k, and k′ + |π′| = k + |π|.
Furthermore, since conjugation is its own inverse, we obtain the following
lemma.

Lemma 4.1. Let Sn,k,` be the set of pairs (k, π), where k is a non-negative
integer and π is an overpartition of n− k into ` odd parts of size ≤ 2k + 1,
with all overlined parts no larger than 2k − 1. Then, |Sn,k,`| = |Sn,`,k|.

When k + ν(π) ≡ 1 (mod 2), conjugation is sign-reversing, which leads
to the next lemma.

Lemma 4.2. Conjugation is a sign-reversing involution on pairs (k, π) ∈ Pn
counted with weight (−1)ν(π), where k + ν(π) ≡ 1 (mod 2).

Proof. This follows from Lemma 4.1 and the fact that k 6≡ ν(π) (mod 2), so
conjugation must be sign-reversing. �

4.2. Variations

For the case k+ν(π) ≡ 0 (mod 2), we consider two variations of conjugation.
First, we define φs(k, π) by fixing the smallest part of π and conjugating the
remainder of the boxed 2-modular diagram.

Example 4.3. φs(4, (9, 9, 9, 7, 7, 5)) = (5, (11, 11, 11, 7, 5))

0 1 1 1 1
1 2 2 2 2
1 2 2 2 2
1 2 2 2 2
1 2 2 2
1 2 2 2
1 2 2

φs−→

0 1 1 1 1 1
1 2 2 2 2 2
1 2 2 2 2 2
1 2 2 2 2 2
1 2 2 2
1 2 2

Note that, φs is well-defined for pairs (k, π) ∈ Pn where the last row of
the boxed 2-modular diagram is shorter than the last column. Equivalently,

φs is well-defined when s(π)−1
2 < ν`(k, π). Furthermore, φs is also well defined

when s(π)−1
2 = ν`(k, π), s(π) < 2k+1, and the last part of π is not overlined.

The last condition is necessary to maintain the restriction on overpartitions
that only the first part of any size may be overlined. If we define (ks, πs) =
φs((k, π)), we can note that ks = ν(π) − 1 and ν(πs) = k + 1. Moreover,
the size of the penultimate part of π determines ν`(φs(k, π)), so we consider
separately the cases where νs(π) = 1 and νs(π) > 1. Then, we have the
following lemmas.
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Lemma 4.3. The map φs is a sign-reversing involution on the set {(k, π) ∈
Pn : k + ν(π) ≡ 0 (mod 2), s(π) < 2ν`(k, π) + 1, and νs(π) = 1}.

Proof. Let (k, π) ∈ Pn such that k + ν(π) ≡ 0 (mod 2), s(π) < 2ν`(k, π) +
1, and νs(π) = 1. Let (ks, πs) = φs(k, π). Since νs(π) = 1, the second small-
est part of π, which determines ν`(ks, πs), will be larger than s(π) = s(πs),
so s(πs) < 2ν`(ks, πs) + 1. Moreover, since s(π) < 2ν`(k, π) + 1, νs(πs) = 1.
Thus, (ks, πs) ∈ Pn such that ks + ν(πs) ≡ 0 (mod 2), s(πs) < 2ν`(ks, πs) +
1, and νs(πs) = 1. Finally, since ν(π) ≡ k 6≡ k+1 (mod 2) and ν(πs) = k+1,
ν(πs) 6≡ ν(π) (mod 2), so the map is sign-reversing. �

Lemma 4.4. The map φs is a sign-reversing involution on the set {(k, π) ∈
Pn : k + ν(π) ≡ 0 (mod 2), s(π) = 2ν`(k, π) + 1, s(π) 6= 2k + 1, and νs(π) >
1}.

Proof. Let (k, π) ∈ Pn such that k + ν(π) ≡ 0 (mod 2), s(π) = 2ν`(k, π) +
1, s(π) 6= 2k+1 and νs(π) > 1. Since s(π) 6= 2k+1, φs is well-defined and we
can let (ks, πs) = φs(k, π). Since νs(π) > 1, 2ν`(ks, πs) + 1 = s(π) = s(πs).
Furthermore, because s(π) 6= 2k + 1 and νs(π) > 1, ν`(k, π) < ν(π) − 1,
so s(πs) = s(π) = 2ν`(k, π) + 1 < 2ν(π) − 1 = 2ks + 1. Moreover, since
s(π) = 2ν`(k, π)+1, νs(πs) > 1. Thus, (ks, πs) ∈ Pn such that ks+ν(πs) ≡ 0
(mod 2), s(πs) = 2ν`(ks, πs) + 1, s(πs) 6= 2k + 1, and νs(πs) > 1. Finally,
as explained above, the map is sign-reversing because ν(πs) 6≡ ν(π) (mod 2).

�

Another variation of conjugation is φr, defined as φr(k, π) = conj ◦ φs ◦
conj(k, π), where conj is the conjugation map described in Section 4.1. Note
that this is the same as fixing the right-most column of the boxed 2-modular
diagram, conjugating the remainder, and making a small adjustment to which
parts are overlined.

Example 4.4. We have φr(5, (11, 11, 9, 9, 7, 7, 7)) = (8, (17, 17, 15, 9)).

0 1 1 1 1 1
1 2 2 2 2 2
1 2 2 2 2 2
1 2 2 2 2
1 2 2 2 2
1 2 2 2
1 2 2 2
1 2 2 2

conj−−−−→

0 1 1 1 1 1 1 1
1 2 2 2 2 2 2 2
1 2 2 2 2 2 2 2
1 2 2 2 2 2 2 2
1 2 2 2 2
1 2 2

φs−−−→

0 1 1 1 1
1 2 2 2 2
1 2 2 2 2
1 2 2 2 2
1 2 2 2 2
1 2 2 2
1 2 2 2
1 2 2 2
1 2 2

conj−−−−→

0 1 1 1 1 1 1 1 1
1 2 2 2 2 2 2 2 2
1 2 2 2 2 2 2 2 2
1 2 2 2 2 2 2 2
1 2 2 2 2

Note that φr is well-defined for pairs (k, π) ∈ Pn where the last row of
the boxed 2 modular diagram is longer than the last column. Equivalently, φr
is well-defined when s(π)−1

2 > ν`(k, π). Thus, we obtain the following lemma.
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Lemma 4.5. The map φr is a sign reversing involution on the set {(k, π) ∈
Pn : k+ν(π) ≡ 0 (mod 2), s(π) > 2ν`(k, π)+1, and π has a part of size 2k−
1}.

Proof. Let (k, π) ∈ Pn such that k + ν(π) ≡ 0 (mod 2), s(π) > 2ν`(k, π) +
1, and π has a part of size 2k − 1. Let (k′, π′) be the conjugate of (k, π).
Then, s(π′) < 2ν`(k

′, π′) + 1 and νs(π) = 1, so we can apply Lemma 4.3. �

After applying Lemmas 4.2, 4.3, 4.4, and 4.5, we are left with four cases,
all of which have k + ν(π) ≡ 0 (mod 2).

• Case 1: Smallest part of π appears once and is equal to 2ν`(k, π) + 1 6=
2k + 1.
• Case 2: Smallest part of π appears multiple times and is smaller than

2ν`(k, π) + 1.
• Case 3: Smallest part of π is greater than 2ν`(k, π) + 1 and π has no

part of size 2k − 1.
• Case 4: s(π) = 2ν`(k, π) + 1 = 2k + 1.

Note that applying φs to a pair (k, π) in Case 1 reduces the number of
distinct parts by one. Since the number of overpartitions of a given shape
depends on the number of distinct parts, reducing the number of distinct
parts by one requires us to restrict which parts of π may be overlined. The
next two lemmas provide the details of dividing Case 1 into two halves by
considering whether or not the smallest part is overlined.

Lemma 4.6. There is a sign-reversing bijection between the pairs in Case 1
where the smallest part is not overlined and the pairs in Case 2.

Proof. Let (k, π) be a pair in Case 1 where the smallest part of π not over-
lined. Since the smallest part of π is not overlined, φs is well-defined. Thus,
let (ks, πs) = φs(k, π). Since νs(π) = 1, s(πs) < 2ν`(ks, πs) + 1. Moreover,
because s(π) = 2ν`(k, π) + 1, νs(πs) > 1. Therefore, (ks, πs) is in Case 2.

Since φs is its own inverse, we can take a pair (k2, π2) in Case 2 and
apply φs to find a pair in Case 1. Because π2 has more than one appearance
of the smallest part, the last part will not be overlined, so the smallest part
of φs(k2, π2) will not be overlined. �

Lemma 4.7. There is a sign-reversing bijection between the pairs in Case 1,
where the smallest part is overlined, and the pairs in Case 3.

Proof. Note that conjugation is a sign-preserving bijection between the pairs
in Case 2 and the pairs in Case 3. Thus, we can remove the overline on the
smallest part of π, apply φs, and take the conjugate to obtain a sign-reversing
bijection between the pairs in Case 1, where the smallest part is overlined,
and the pairs in Case 3. �

Now, the only pairs left are those in Case 4. These occur exactly when
n = k + |π| = 2k(k + 1), proving Theorem 3.1.
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5. Generalizations

First, we note that all of our maps preserve the number of boxes containing a
1 in our diagrams. Furthermore, this number of 1s is exactly k+ν(π). Thus, if
we let z count the number of 1s in the diagram, we obtain the generalization.

Theorem 5.1.
∞∑
n=0

(zq; q2)nz
nqn

(−zq; q2)n+1
=

∞∑
n=0

(−1)nz2nq2n(n+1).

Theorem 1.1 is the case z = 1 of this generalization. Additionally, we
can generalize boxed 2-modular diagrams as boxed m-modular diagrams by
replacing the 2s in the diagram with m’s and all 1s with r’s to allow parts
of size r (mod m) for some fixed 0 ≤ r < m. Then, we obtain the following
generalization.

Theorem 5.2.
∞∑
n=0

(zqr; qm)nz
nqrn

(−zqr; qm)n+1
=

∞∑
n=0

(−1)nz2nqn(mn+2r),

Theorem 5.2 yields Theorem 1.1 when z = 1, m = 2, and r = 1.

6. Further work

This work allows us to obtain a similar combinatorial interpretation for an-
other one of Ramanujan’s identities.

Theorem 6.1 (Ramanujan). If f(q) is defined by (1), then for |q| < 1

∞∑
k=0

qn(q; q2)n
(−q; q)2n+1

= f(q3)

We can interpret Theorem 6.1 in terms of pairs (k, π) ∈ P ′n where P ′n
contains all pairs (k, π) where k ∈ Z≥0, π is an overpartition into parts of
size ≤ 2k + 1 where all overlined parts are odd and of size ≤ 2k − 1, and
k + |π| = n. We count each pair with weight (−1)ν(π).

Theorem 6.2. Let p′0(n) (resp. p′e(n)) be the number of pairs (k, π) ∈ P ′n
where π has an odd number (resp. even number) of parts. Then, for n ≥ 0,

p′e(n)− p′o(n) =

{
(−1)k if n = 3k(k+1)

2

0 otherwise.

Due to the presence of even parts in the partition, a bijective proof of
Theorem 6.2 appears to be more difficult than the proof of Theorem 3.1 and
would be a welcome contribution. We suspect that the involution necessary
for a bijective proof of Theorem 6.2 will fix pairs (k, (2k+2k−1+. . .+(k+1))).
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